Formal issues 000000	Proposa l 0000000	Consequences 000000000	C on clu sion	References

What might be known Epistemic modality and uncertain contexts

Laurent Roussarie

Université Paris 8 & UMR 7023, CNRS

Semantics and Linguistic Theory (SALT) 19 April 3–5 2009

Université Paris 8 & UMR 7023. CNRS

Laurent Roussarie

Formal issues 000000	Proposal 0000000	Consequences 0000000000	Conclusion	References
Introduction Starting point: ep		nics		

In standard dynamic semantics

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References
Introduction Starting point: epis	temics in dynamics	5		

In standard dynamic semantics

- A declarative containing an epistemic modal operator, such as:
 - (1) Hitch **might** be the culprit.

is meaningful but not informative.

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References
Introduction Starting point: epis	temics in dynamic:	5		

In standard dynamic semantics

• A declarative containing an epistemic modal operator, such as:

(1) Hitch **might** be the culprit.

is meaningful but not informative.

- A question containing an epistemic modal operator, such as:
 - (2) **Might** Hitch be the culprit?

cannot be interpreted as genuine request for information.

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References
Introduction Aim				

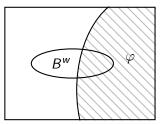
- (1) Hitch **might** be the culprit.
- (2) **Might** Hitch be the culprit?

٩

- how to make (1) informative;
- how to make (2) inquisitive

Laurent Roussarie <u>What</u> might be known

Formal issues ●00000	Proposal 0000000	Consequences 000000000	Conclusion	References
Epistemic modality in	assertions			
Epistemic n (Kratzer, 1981, 1	2			

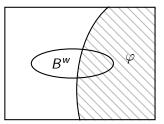


Université Paris 8 & UMR 7023, CNRS

Formal issues ●00000	Proposal 0000000	Consequences 0000000000	C on clu sion	References
Epistemic modality in a	assertions			
Epistemic m (Kratzer, 1981, 1				

Quantification over possible worlds

 $\Diamond(B)(\varphi)$ is true in w iff $\llbracket B \rrbracket^w \cap \llbracket \varphi \rrbracket \neq \emptyset$


▶ < 토▶ < 토▶ · Université Paris 8 & UMR 7023. CNRS

2

Formal issues ●00000	Proposal 0000000	Consequences 000000000	Conclusion	References
Epistemic modality in	assertions			
Epistemic n (Kratzer, 1981, 1	2			

Quantification over possible worlds

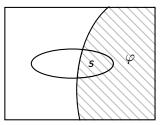
 $\Diamond(B)(\varphi)$ is true in w iff $\llbracket B \rrbracket^w \cap \llbracket \varphi \rrbracket \neq \varnothing$

Université Paris 8 & UMR 7023. CNRS

Modal base B : a body of knowledge.

Laurent Roussarie

Formal issues 0●0000	Proposal 0000000	Consequences 000000000	C on clu sion	References
Epistemic modality in a	ssertions			
Dynamic ser		oenendiik et al., 1996)	

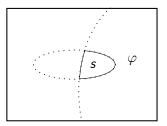

Université Paris 8 & UMR 7023, CNRS

Formal issues 0●0000	Prop osa l 0000000	Consequences 0000000000	Conclusion	References	
Epistemic modality in assertions					

Dynamic semantics CCP and Update (Heim, 1992; Groenendijk et al., 1996)

Update of context/state s by declarative arphi

 $s\llbracket\varphi\rrbracket^{\operatorname{ccp}} = s \cap \llbracket\varphi\rrbracket = \{w \in s \,|\, \llbracket\varphi\rrbracket^w = 1\}$

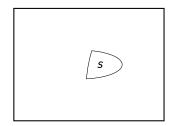


Formal issues 0●0000	Proposal 0000000	Consequences 0000000000	Conclusion	References	
Epistemic modality in assertions					

Dynamic semantics CCP and Update (Heim, 1992; Groenendijk et al., 1996)

Update of context/state s by declarative arphi

 $s\llbracket\varphi\rrbracket^{\operatorname{ccp}} = s \cap \llbracket\varphi\rrbracket = \{w \in s \,|\, \llbracket\varphi\rrbracket^w = 1\}$


Université Paris 8 & UMR 7023, CNRS

Formal issues 0●0000	Proposal 0000000	Consequences 0000000000	Conclusion	References
Epistemic modality in a	assertions			

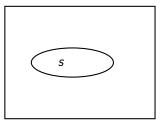
Dynamic semantics CCP and Update (Heim, 1992; Groenendijk et al., 1996)

Update of context/state s by declarative arphi

$$s\llbracket\varphi\rrbracket^{\operatorname{ccp}} = s \cap \llbracket\varphi\rrbracket = \{w \in s \,|\, \llbracket\varphi\rrbracket^w = 1\}$$

Eliminating worlds = growth of information "à la Stalnaker (1978)"

Laurent Roussarie

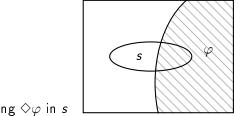

What might be known

Formal issues 00●000	Proposal 000000	Consequences	Conclusion	References
Epistemic modality in a	assertions			
Dynamics o	f epistemic	modalities		

Groenendijk et al. (1996), von Fintel and Gillies (2007)

CCP of an epistemic possibility $\diamond arphi$

$$s\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = \{ w \in s \, | \, s\llbracket \varphi \rrbracket^{\operatorname{ccp}} \neq \varnothing \} = \begin{cases} s \text{ if } s \cap \llbracket \varphi \rrbracket \neq \varnothing \\ \varnothing \text{ otherwise} \end{cases}$$


□ ▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶ _ 볼 ~ ⁄) ू(Université Paris 8 & UMR 7023, CNRS

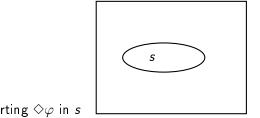
Formal issues	Proposal	Consequences	Conclusion	References
000000				
Epistemic modality in	assertions			
Dynamics of	of epistemic	modalities		

Groenendijk et al. (1996), von Fintel and Gillies (2007)

CCP of an epistemic possibility $\Diamond \varphi$

$$s\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = \{ w \in s \, | \, s\llbracket \varphi \rrbracket^{\operatorname{ccp}} \neq \varnothing \} = \begin{cases} s \text{ if } s \cap \llbracket \varphi \rrbracket \neq \varnothing \\ \varnothing \text{ otherwise} \end{cases}$$

Asserting $\Diamond \varphi$ in s

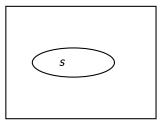

Université Paris 8 & UMR 7023, CNRS

Laurent Roussarie

Université Paris 8 & UMR 7023. CNRS

$$s\llbracket \diamondsuit \varphi \rrbracket^{ccp} = \{ w \in s \, | \, s\llbracket \varphi \rrbracket^{ccp} \neq \varnothing \} = \begin{cases} s \text{ if } s \cap \llbracket \varphi \rrbracket \neq \varnothing \\ \emptyset \text{ otherwise} \end{cases}$$

Asserting $\Diamond \varphi$ in s


Laurent Roussarie

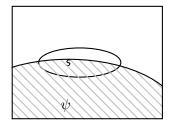
Formal issues	Proposal	Consequences	Conclusion	References
00000				
Epistemic modality in	assertions			
Dynamics o	f epistemic	modalities		

Groenendijk et al. (1996), von Fintel and Gillies (2007)

CCP of an epistemic possibility $\Diamond \varphi$

$$s\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = \{ w \in s \, | \, s\llbracket \varphi \rrbracket^{\operatorname{ccp}} \neq \varnothing \} = \begin{cases} s \text{ if } s \cap \llbracket \varphi \rrbracket \neq \varnothing \\ \varnothing \text{ otherwise} \end{cases}$$

Actually you can learn stuff from an epistemic modal assertion. Now what is learned and what is known is precisely in s_{\pm} , s_{\pm} , s_{\pm}


Laurent Roussarie

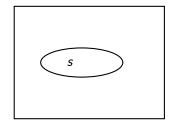
Formal issues	Proposal	Consequences	Conclusion	References		
000000	0000000					
Epistemic modality in assertions						
Dynamics of	of enistemic	modalities				

Groenendijk et al. (1996), von Fintel and Gillies (2007)

CCP of an epistemic possibility $\Diamond \varphi$

$$s\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = \{ w \in s \, | \, s\llbracket \varphi \rrbracket^{\operatorname{ccp}} \neq \varnothing \} = \begin{cases} s \text{ if } s \cap \llbracket \varphi \rrbracket \neq \varnothing \\ \varnothing \text{ otherwise} \end{cases}$$

Asserting $\Diamond \psi$ in s


Actually you can learn stuff from an epistemic modal assertion. Now what is learned and what is known is precisely in s_{\pm} , s_{\pm} ,

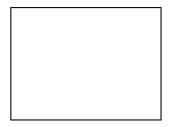
Laurent Roussarie

Formal issues 00●000	Proposal 0000000	Consequences	Conclusion	References
Epistemic modality in as	sertions			
Dynamics of Groenendijk et al.	-	modalities tel and Gillies (2007)		

CCP of an epistemic possibility $\Diamond \varphi$

$$s\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = \{ w \in s \, | \, s\llbracket \varphi \rrbracket^{\operatorname{ccp}} \neq \varnothing \} = \begin{cases} s \text{ if } s \cap \llbracket \varphi \rrbracket \neq \varnothing \\ \varnothing \text{ otherwise} \end{cases}$$

Asserting $\Diamond \psi$ in s


Actually you can learn stuff from an epistemic modal assertion. Now what is learned and what is known is precisely in s_{\pm} .

Laurent Roussarie

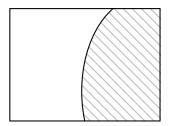
Formal issues ०००●००	Proposal 0000000	Consequences 0000000000	Con clu sion	References
Epistemic modality in q	uestions			
Questions (Groenendijk and	Stokhof, 1984, 1	.989)		

The meaning of a question as an equivalence relation on ${\cal W}$

 $\llbracket ?\varphi \rrbracket = \{ \langle w, w' \rangle \in \mathcal{W} \times \mathcal{W} \, | \, \llbracket \varphi \rrbracket^{w'} = \llbracket \varphi \rrbracket^{w} \}$

Université Paris 8 & UMR 7023, CNRS

Laurent Roussarie


Formal issues 000●00	Proposal 0000000	Consequences 0000000000	Conclusion	References		
Epistemic modality in questions						
Ouestiens						
Questions						

(Groenendijk and Stokhof, 1984, 1989)

The meaning of a question as an equivalence relation on ${\cal W}$

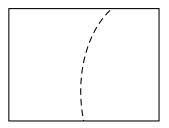
 $\llbracket ?\varphi \rrbracket = \{ \langle w, w' \rangle \in \mathcal{W} \times \mathcal{W} \mid \llbracket \varphi \rrbracket^{w'} = \llbracket \varphi \rrbracket^{w} \}$

Proposition $\llbracket \varphi \rrbracket$

▲ 臣 ▶ | ▲ 臣 ▶ | | Université Paris 8 & UMR 7023. CNRS

э

Laurent Roussarie


Formal issues 000●00	Proposa l 0000000	Consequences 0000000000	Conclusion	References		
Epistemic modality in questions						
Questions						

(Groenendijk and Stokhof, 1984, 1989)

The meaning of a question as an equivalence relation on ${\cal W}$

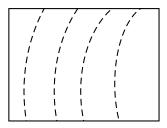
 $\llbracket ?\varphi \rrbracket = \{ \langle w, w' \rangle \in \mathcal{W} \times \mathcal{W} \mid \llbracket \varphi \rrbracket^{w'} = \llbracket \varphi \rrbracket^{w} \}$

Question $[?\varphi]$

Laurent Roussarie What might be known

(注) → (注) → () Université Paris 8 & UMR 7023. CNRS

э

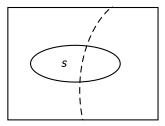

Formal issues 000●00	Proposal 0000000	Consequences 000000000	C on clu sion	References		
Epistemic modality in questions						
Questions						

(Groenendijk and Stokhof, 1984, 1989)

The meaning of a question as an equivalence relation on ${\mathcal W}$

 $\llbracket ? \varphi \rrbracket = \{ \langle w, w' \rangle \in \mathcal{W} \times \mathcal{W} \, | \, \llbracket \varphi \rrbracket^{w'} = \llbracket \varphi \rrbracket^{w} \}$

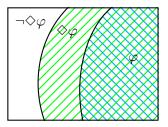
Question $[?\lambda x \varphi]$



Laurent Roussarie What might be known

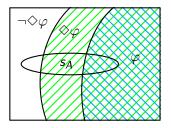
Formal issues 0000●0	Proposal 0000000	Consequences 000000000	Conclusion	References
Epistemic modality in o	questions			
Inquisitivene Groenendijk (1999				

Inquisitiveness of $?\varphi$ in s


 $?\varphi$ is inquisitive w.r.t s iff $[\![?\varphi]\!]$ actually divides s into several parts (ie iff there exist w_1 and w_2 in s s.t. $[\![\varphi]\!]^{w_1} \neq [\![\varphi]\!]^{w_2}$).

Université Paris 8 & UMR 7023, CNRS

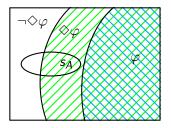
Formal issues ○○○○○●	Proposal 0000000	Consequences 000000000	Con clu sion	References
Epistemic modality in o	questions			
Epistemic m A paradox: ?�ø	2			


A does not know whether Hitch might or might not be the culprit i.e. $\diamondsuit \varphi$ is (should be) inquisitive w.r.t. s_A

Université Paris 8 & UMR 7023, CNRS

Formal issues 00000●	Proposal 0000000	Consequences 000000000	C on clu sion	References
Epistemic modality in	questions			
	nodality in c	•		

A does not know whether Hitch might or might not be the culprit i.e. $\diamondsuit \varphi$ is (should be) inquisitive w.r.t. s_A

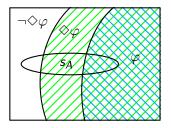

An epistemic state is built upon a transitive accessibity relation.

Laurent Roussarie

What might be known

Formal issues 00000●	Proposal 0000000	Consequences 000000000	C on clu sion	References
Epistemic modality in	questions			
Epistemic n	nodality in c	•		

A does not know whether Hitch might or might not be the culprit i.e. $\diamondsuit \varphi$ is (should be) inquisitive w.r.t. s_A

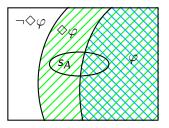

An epistemic state is built upon a transitive accessibity relation.

Laurent Roussarie

What might be known

Formal issues 00000●	Proposal 0000000	Consequences 000000000	C on clu sion	References
Epistemic modality in	questions			
Epistemic n	nodality in c	•		

A does not know whether Hitch might or might not be the culprit i.e. $\diamondsuit \varphi$ is (should be) inquisitive w.r.t. s_A


An epistemic state is built upon a transitive accessibity relation.

Laurent Roussarie

What might be known

Formal issues 00000●	Proposal 0000000	Consequences 000000000	C on clu sion	References
Epistemic modality in	questions			
Epistemic n	nodality in c	•		

A does not know whether Hitch might or might not be the culprit i.e. $? \diamondsuit \varphi$ is (should be) inquisitive w.r.t. s_A

An epistemic state is built upon a transitive accessibity relation.

Laurent Roussarie

What might be known

Formal issues 000000	Proposal ●000000	Consequences 000000000	Conclusion	References
Structuring the context				
Proposal Information spaces				

• Evaluate epistemics w.r.t. a set of information states. Let's call it an information *space*.

< ∃ →

Formal issues 000000	Proposal ●000000	Consequences 000000000	Conclusion	References
Structuring the context				
Proposal Information spaces				

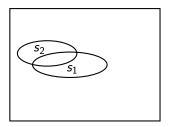
- Evaluate epistemics w.r.t. a set of information states. Let's call it an information *space*.
- Let S be a set of information states $(S \subset \wp(\mathcal{W}))$:

CCP of modal sentences

$$\begin{split} S\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} &= \{ s \in S \mid s\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = s \} = \{ s \in S \mid s \cap \llbracket \varphi \rrbracket \neq \varnothing \} \\ S\llbracket \Box \varphi \rrbracket^{\operatorname{ccp}} &= \{ s \in S \mid s\llbracket \Box \varphi \rrbracket^{\operatorname{ccp}} = s \} = \{ s \in S \mid s \subset \llbracket \varphi \rrbracket \} \end{split}$$

General case

$$S\llbracket \psi \rrbracket^{\operatorname{ccp}} = \{ s' \, | \, \exists s \in S, \ s\llbracket \psi \rrbracket^{\operatorname{ccp}} = s' \}$$

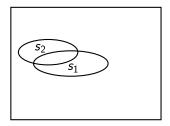

Université Paris 8 & UMR 7023, CNRS

Laurent Roussarie

Formal issues 000000	Proposal 0●00000	Consequences 000000000	Conclusion	References
Structuring the context				

Update of an information space

 $S = \{s_1 ; s_2\}$



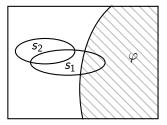
Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0●00000	Consequences 0000000000	Conclusion	References
Structuring the context				

Update of an information space

$$S = \{s_1 ext{ ; } s_2\}$$

Update with $\Diamond arphi$



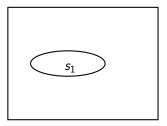
Laurent Roussarie What might be known

Formal issues 000000	Proposal 0●00000	Consequences 0000000000	Conclusion	References
Structuring the context				

Update of an information space Illustration

$$S = \{s_1 ext{ ; } s_2\}$$

Update with $\Diamond arphi$

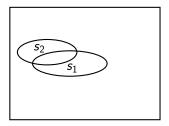


Formal issues 000000	Proposal 0●00000	Consequences 000000000	Conclusion	References
Structuring the context				

Update of an information space

$$S = \{s_1 ext{ ; } s_2\}$$

Update with $\Diamond arphi$



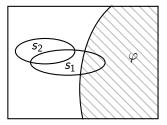
Laurent Roussarie What might be known

Formal issues 000000	Proposal 0●00000	Consequences 0000000000	Conclusion	References
Structuring the context				

Update of an information space

$$S = \{s_1 \; ; \; s_2\}$$

Update with $arphi$



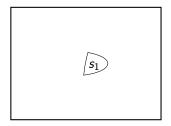
Laurent Roussarie What might be known

Formal issues 000000	Proposal 0●00000	Consequences 000000000	Conclusion	References
Structuring the context				

Update of an information space Illustration

$$S = \{s_1 \; ; \; s_2\}$$

Update with $arphi$



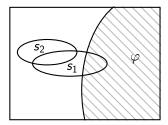
Formal issues 000000	Proposal 0●00000	Consequences 000000000	Conclusion	References
Structuring the context				

Update of an information space

$$S = \{s_1 \; ; \; s_2\}$$

Update with $arphi$

Laurent Roussarie What might be known Université Paris 8 & UMR 7023, CNRS


Formal issues 000000	Prop osal ○○●○○○○	Consequences 000000000	Conclusion	References
Inquisitiveness again				

Epistemic modality in questions

Inquisitiveness rescued

Inquisitiveness of $? \diamondsuit \varphi$

 $? \diamond \varphi$ is inquisitive in S if there are at least $s_1 \in S$ and $s_2 \in S$ s.t. $s_1 \cap \llbracket \varphi \rrbracket \neq \emptyset$ and $s_2 \cap \llbracket \varphi \rrbracket = \emptyset$.

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal ○○○●○○○	Consequences 000000000	C on clu sion	References
Inquisitiveness again				

In standard Update Semantics (simplified)

- φ is consistent with s iff $s[\![\varphi]\!]^{ccp}$ exists and $s[\![\varphi]\!]^{ccp} \neq \emptyset$.
- 2 φ is supported by s iff $s \llbracket \varphi \rrbracket^{ccp}$ exists and $s \llbracket \varphi \rrbracket^{ccp} = s$.

□ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 필 · · · ○ Q (Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal ○○○●○○○	Consequences 000000000	Conclusion	References
Inquisitiveness again				

In standard Update Semantics (simplified)

- φ is consistent with s iff $s[\![\varphi]\!]^{ccp}$ exists and $s[\![\varphi]\!]^{ccp} \neq \emptyset$.
- $\mathfrak{G} \varphi$ is supported by s iff $s \llbracket \varphi \rrbracket^{ccp}$ exists and $s \llbracket \varphi \rrbracket^{ccp} = s$.

With information spaces

- φ is consistent with S iff $S[\![\varphi]\!]^{ccp}$ exists and $S[\![\varphi]\!]^{ccp} \neq \emptyset$.
- $\mathfrak{O} \ \varphi \text{ is supported by } S \text{ iff } S\llbracket \varphi \rrbracket^{\operatorname{ccp}} \text{ exists and } S\llbracket \varphi \rrbracket^{\operatorname{ccp}} = S.$

Formal issues 000000	Proposal ○○○●○○○	Consequences 000000000	Conclusion	References
Inquisitiveness again				

In standard Update Semantics (simplified)

- φ is consistent with s iff $s[\![\varphi]\!]^{ccp}$ exists and $s[\![\varphi]\!]^{ccp} \neq \emptyset$.
- $\mathfrak{G} \varphi$ is supported by s iff $s \llbracket \varphi \rrbracket^{ccp}$ exists and $s \llbracket \varphi \rrbracket^{ccp} = s$.

With information spaces

- φ is consistent with S iff $S[\![\varphi]\!]^{ccp}$ exists and $S[\![\varphi]\!]^{ccp} \neq \emptyset$.
- **2** φ is supported by S iff $S[\![\varphi]\!]^{ccp}$ exists and $S[\![\varphi]\!]^{ccp} = S$.
- φ is minimally supported by S iff S [[φ]]^{ccp} exists and there is at least an s ∈ S s.t. s ∈ S [[φ]]^{ccp}.

= nar

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Formal issues 000000	Proposal ○○○●○○○	Consequences 000000000	Conclusion	References
Inquisitiveness again				

In standard Update Semantics (simplified)

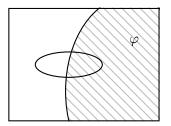
- φ is consistent with s iff $s[\![\varphi]\!]^{ccp}$ exists and $s[\![\varphi]\!]^{ccp} \neq \emptyset$.
- $\mathfrak{G} \varphi$ is supported by s iff $s \llbracket \varphi \rrbracket^{ccp}$ exists and $s \llbracket \varphi \rrbracket^{ccp} = s$.

With information spaces

- φ is consistent with S iff $S[\![\varphi]\!]^{ccp}$ exists and $S[\![\varphi]\!]^{ccp} \neq \emptyset$.
- **2** φ is supported by S iff $S[\![\varphi]\!]^{ccp}$ exists and $S[\![\varphi]\!]^{ccp} = S$.
- φ is minimally supported by S iff S [[φ]]^{ccp} exists and there is at least an s ∈ S s.t. s ∈ S [[φ]]^{ccp}.
- φ is maximally consistent with S iff $S[\![\varphi]\!]^{ccp}$ exists and for every $s \in S[\![\varphi]\!]^{ccp}$, $s[\![\varphi]\!]^{ccp} \neq \emptyset$.

Formal issues 000000	Proposal ○○○○●○○	Consequences 000000000	Conclusion	References
Inquisitiveness again				

...illustrated

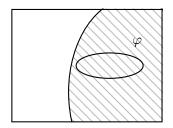

Université Paris 8 & UMR 7023, CNRS

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国

Formal issues 000000	Proposal ○○○○●○○	Conse qu en ces 0000000000	Conclusion	References
Inquisitiveness again				
Consistency illustrated	and Suppo	rt		

 φ is consistent with s



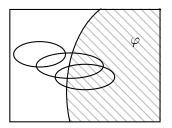
3

イロト イヨト イヨト イヨト

Formal issues 000000	Prop osal ○○○○●○○	Consequences 000000000	C on clu sio n	References
Inquisitiveness again				
Consistency illustrated	and Suppo	rt		

 φ is supported by s

Université Paris 8 & UMR 7023, CNRS


3

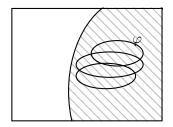
▶ ▲ 문 ▶ ▲ 문 ▶

< A

Formal issues 000000	Proposal ○○○○●○○	Conse qu en ces 0000000000	Conclusion	References
Inquisitiveness again				
Consistency illustrated	and Suppo	rt		

arphi is consistent with S

Université Paris 8 & UMR 7023, CNRS

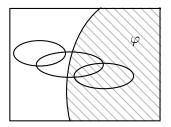

3

★@→ ★注→ ★注→

Formal issues 000000	Prop osal ○○○○●○○	Consequences 0000000000	C on clu sion	References
Inquisitiveness again				
Consistency	/ and Suppo	rt		

...illustrated

 φ is supported by S

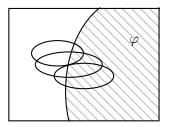


> < 프 > < 프 > Université Paris 8 & UMR 7023, CNRS

3

Formal issues 000000	Prop osal ○○○○●○○	Conse qu en ces 0000000000	C on clu sion	References
Inquisitiveness again				
Consistency illustrated	and Suppo	rt		

arphi is minimally supported by S

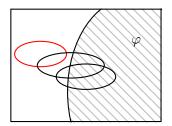


Université Paris 8 & UMR 7023, CNRS

æ

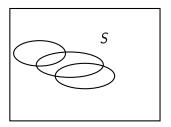
Formal issues 000000	Prop osal ○○○○●○○	Consequences 0000000000	Conclusion	References
Inquisitiveness again				
Consistency	and Suppo	rt		

arphi is maximally consistent with S



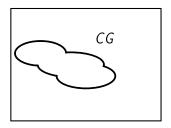
Formal issues 000000	Proposal ○○○○○●○	Consequences 000000000	Conclusion	References
Inquisitiveness again				

Inquisitiveness of $? \diamondsuit \varphi$


$? \diamond \varphi$ is inquisitive in S iff φ is consistent but not maximally consistent with S.

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Prop osal ○○○○○●	Consequences 000000000	Conclusion	References
Inquisitiveness again				
Information S derives from C		common grou	nd	


An information space is a structured common ground (CG). $S \subseteq \wp(CG)$ and $CG = \bigcup S$

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Prop osal ○○○○○●	Consequences 000000000	Conclusion	References
Inquisitiveness again				
Information S derives from C		common grou	nd	

An information space is a structured common ground (CG). $S \subseteq \wp(CG)$ and $CG = \bigcup S$

Université Paris 8 & UMR 7023. CNRS

CG is an epistemic information state.

Formal issues 000000	Proposal 0000000	Consequences ●000000000	Con clu sion	References
Motivation for informa	tion spaces			
What do int Multi-agent persp	-	paces stand for	?	

What does it mean to have multiples information states in the context?

Université Paris 8 & UMR 7023, CNRS

Formal issues	Proposal

Motivation for information spaces

What do information spaces stand for?

Multi-agent perspective

What does it mean to have multiples information states in the context? Related works:

- Gunlogson (2001): the Common Ground (or context set) is the union of the speaker's and adressee's public beliefs \rightarrow two information states
- Stephenson (2007): the epistemic modal base is relative to a judge parameter/index → as many states as judges.
- von Fintel and Gillies (2008): an epistemic (*might*) modal sentence is evaluated w.r.t. a "cloud" of contexts delimited by some groups of speakers and/or adressees.

Formal issues

000000

Consequences ○●○○○○○○○○ Conclusio

References

Motivation for information spaces

What do information spaces stand for?

From the speaker viewpoint

(2) Might Hitch be the culprit?"Is there any available evidence consistent with the proposition 'Hitch is the culprit' ?"

Evidence = propositions whose truth value is not known. Evidence $\notin CG$

Laurent Roussarie What might be known Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 00●0000000	Conclusion	References
Motivation for inform	ation spaces			
Back to Kr	atzer (1981,	1991)		

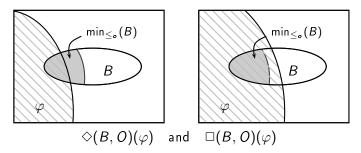
Ordering sources = sets of propositions to complement modal bases, in order:

- to account for graded modal forces ;
- to solve some logical problems with non realistic modal bases (e.g. counterfactuals, deontic/samaritan paradox...);
- to look at more or less reliable information in addition to a(n epistemic) modal base.

Formal issues 000000	Proposa l 0000000	Consequences 00●0000000	Conclusion	References
Motivation for inform	ation spaces			
Back to Kr	atzer (1981,	1991)		

Ordering sources = sets of propositions to complement modal bases, in order:

- to account for graded modal forces ;
- to solve some logical problems with non realistic modal bases (e.g. counterfactuals, deontic/samaritan paradox...);
- to look at more or less reliable information in addition to a(n epistemic) modal base.


An ordering source O induces an order \leq_o among worlds of any modal base.

Let $\min_{\leq_o}(\llbracket B \rrbracket^w)$ be the (sub)set of worlds in $\llbracket B \rrbracket^w$ that come closest to $\cap O$.

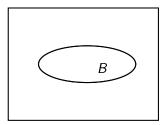
Back to Kratzer (1981, 1991)

Human possibilities and necessities

$$\begin{split} & \llbracket \diamondsuit(B,O)(\varphi) \rrbracket^w = 1 \text{ iff } \min_{\leq_o}(\llbracket B \rrbracket^w) \cap \llbracket \varphi \rrbracket \neq \varnothing \\ & \llbracket \square(B,O)(\varphi) \rrbracket^w = 1 \text{ iff } \min_{\leq_o}(\llbracket B \rrbracket^w) \subset \llbracket \varphi \rrbracket \end{split}$$

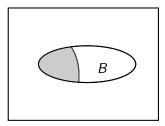
What might be known

э


Formal issues 000000	Proposal 000000	Consequences 0000●00000	Conclusion	References
Motivation for informati	on spaces			
F ormula				
Example				

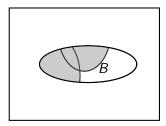
- (1) Hitch might be the culprit.
 - The facts (∈ the epistemic modal base): A crime happened. There are no established facts and no clear evidence that Hitch is either innocent or culprit. We don't have much information on Hitch's personal schedule at the moment of the crime. We only know that Hitch is a good guy.
 - Ordering sources:
 - Empty ordering source: $O = \emptyset$, (1) is true.
 - We have the stereotypical belief that normally good guys don't commit crimes
 - $O = \{good guys don't commit crimes\}$: (1) is false.
 - Julia provided us with an alibi: she was with Hitch at the moment of the crime and she says that he is innocent (but can we trust Julia?):
 O = {Hitch is innocent}: (1) is false.

Laurent Roussarie


Formal issues 000000	Proposal 0000000	Conse qu en ces 00000●0000	C on clu sion	References
Motivation for informatio	n spaces			

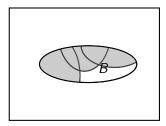
Take an epistemic modal base B, and consider different ordering sources O_1 , O_2 , O_3 ..., you'll get several epistemic information states (namely $\min_{\leq o_1}(B)$, $\min_{\leq o_2}(B)$, $\min_{\leq o_3}(B)$...).

Formal issues 000000	Proposal 0000000	Conse qu en ces 00000●0000	C on clu sion	References
Motivation for informatio	n spaces			


Take an epistemic modal base B, and consider different ordering sources O_1 , O_2 , O_3 ..., you'll get several epistemic information states (namely $\min_{\leq o_1}(B)$, $\min_{\leq o_2}(B)$, $\min_{\leq o_3}(B)$...).

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 00000●0000	C on clu sion	References
Motivation for information	n spaces			


Take an epistemic modal base B, and consider different ordering sources O_1 , O_2 , O_3 ..., you'll get several epistemic information states (namely $\min_{\leq o_1}(B)$, $\min_{\leq o_2}(B)$, $\min_{\leq o_3}(B)$...).

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 00000●0000	C on clu sion	References
Motivation for information	n spaces			

Take an epistemic modal base B, and consider different ordering sources O_1 , O_2 , O_3 ..., you'll get several epistemic information states (namely $\min_{\leq o_1}(B)$, $\min_{\leq o_2}(B)$, $\min_{\leq o_3}(B)$...).

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Conse qu en ces 000000●000	Conclusion	References		
Motivation for information spaces						

To sum up

 $\Diamond (B, O)(\varphi).$

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Conse qu en ces 000000●000	Conclusion	References			
Motivation for information spaces							
To sum up							

 $\Diamond (B, O)(\varphi).$

• *B* comes from the set of established facts in the context, what the speakers know.

Formal issues 000000	Proposal 0000000	Consequences 000000●000	Conclusion	References		
Motivation for information spaces						
To sum un						

 $\Diamond (B, O)(\varphi).$

- *B* comes from the set of established facts in the context, what the speakers know.
- *O* is a set of propositions that the speakers can take into account to draw inferences.

Formal issues 000000	Proposal 0000000	Consequences 000000●000	Conclusion	References			
Motivation for information spaces							
To sum un							

 $\Diamond (B, O)(\varphi).$

sun up

- *B* comes from the set of established facts in the context, what the speakers know.
- *O* is a set of propositions that the speakers can take into account to draw inferences.
- We need to handle different *Os* at once (ie in a same given context).

Formal issues 000000	Proposal 0000000	Consequences ○○○○○●○○	Conclusion	References
Complex possibilities				
Groenendijk e	et al. (1996)	again		

• An information state = a set of possibilities.

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○●○○	Conclusion	References
Complex possibilities				
Groenendijk	et al. (1996)	again		

- An information state = a set of possibilities.
- A possibility = a possible world w (first approximation)

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○●○○	Conclusion	References
Complex possibilities				
Groenendijk	et al. (199	6) again		

- An information state = a set of possibilities.
- A possibility = a tuple (w, g) where g is an assignment Groenendijk et al. (1996)

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○●○○	Conclusion	References
Complex possibilities				
Groenendijk	et al. (199	6) again		

- An information state = a set of possibilities.
- A possibility = a tuple (w, o, g) where o is a set of propositions and g is an assignment

Formal issues 000000	Proposal 0000000	Conse qu en ces ○○○○○○●○○	Conclusion	References
Complex possibilities				
Groenendijk	et al. (199	6) again		

- An information state = a set of possibilities.
- A possibility = a tuple (w, o, g) where o is a set of propositions and g is an assignment

Now let σ be such an information state, ie a set of tuple $\langle w, o, g \rangle$.

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences ○○○○○●○○	C on clu sion	References
Complex possibilities				
Groenendiik	et al. (199	6) again		

- An information state = a set of possibilities.
- A possibility = a tuple (w, o, g) where o is a set of propositions and g is an assignment

Now let σ be such an information state, ie a set of tuple $\langle w, o, g \rangle$. Former simpler information states (viz. s): $\sigma^s = \{ w \mid \exists o \exists g \langle w, o, g \rangle \in \sigma \}$

Formal issues 000000	Proposa l 0000000	Consequences ○○○○○●○○	C on clu sion	References
Complex possibilities				
Groenendiik	et al (199	6) again		

- An information state = a set of possibilities.
- A possibility = a tuple (w, o, g) where o is a set of propositions and g is an assignment

Now let σ be such an information state, ie a set of tuple $\langle w, o, g \rangle$. Former simpler information states (viz. s): $\sigma^s = \{w \mid \exists o \exists g \langle w, o, g \rangle \in \sigma\}$

Université Paris 8 & UMR 7023. CNRS

CCP of $\Diamond \varphi$ in σ

 $\sigma \llbracket \Diamond \varphi \rrbracket^{\operatorname{ccp}} = \{ \langle w, o, g \rangle \in \sigma \mid \min_{\leq_o} (\sigma^s) \cap \llbracket \varphi \rrbracket \neq \emptyset \}$

Laurent Roussarie

What might be known

Formal issues 000000	Proposal 0000000	Consequences ○○○○○●○○	Conclusion	References
Complex possibilities				
Groenendiik	et al. (199	6) again		

- An information state = a set of possibilities.
- A possibility = a tuple (w, o, g) where o is a set of propositions and g is an assignment

Now let σ be such an information state, ie a set of tuple $\langle w, o, g \rangle$. Former simpler information states (viz. s): $\sigma^{s} = \{w \mid \exists o \exists g \langle w, o, g \rangle \in \sigma\}$

Université Paris 8 & UMR 7023, CNRS

CCP of $\Diamond \varphi$ in σ

$$\sigma\llbracket \diamondsuit \varphi \rrbracket^{\operatorname{ccp}} = \{ \langle w, o, g \rangle \in \sigma \mid \min_{\leq o}(\sigma^{s}) \cap \llbracket \varphi \rrbracket \neq \varnothing \}$$

CCP of φ in σ

$$\sigma \llbracket \varphi \rrbracket^{\operatorname{ccp}} = \{ \langle w, o, g \rangle \in \sigma \, | \, \llbracket \varphi \rrbracket^{w,g} = 1 \}$$

Laurent Roussarie

What might be known

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○○●○	Conclusion	References
Complex possibilities				
Back to EM and to a more				

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○○●○	Conclusion	References
Complex possibilities				
Back to EN	/QS			

Intension of ψ w.r.t. a context σ : $\llbracket \psi \rrbracket^{\sigma} = \sigma \llbracket \psi \rrbracket^{ccp}$

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Conse qu en ces ○○○○○○○●○	Conclusion	References
Complex possibilities				
Back to EMG)s			

... and to a more static analysis

Intension of ψ w.r.t. a context σ : $\llbracket \psi \rrbracket^{\sigma} = \sigma \llbracket \psi \rrbracket^{ccp}$

Relational meaning of a non-modal question

 $\llbracket ?\varphi \rrbracket^{\sigma} = \{ \langle \langle w, o, g \rangle, \langle w', o', g \rangle \rangle \in \sigma \times \sigma \, | \, \llbracket \varphi \rrbracket^{w,g} = \llbracket \varphi \rrbracket^{w',g} \}$

□ ▶ 《 @ ▶ 《 필 ▶ 《 필 ▶ 필 · · · ○ Q (Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Conse qu en ces ○○○○○○○●○	Conclusion	References
Complex possibilities				
Back to EM	Qs			

... and to a more static analysis

Intension of ψ w.r.t. a context σ : $[\![\psi]\!]^\sigma = \sigma[\![\psi]\!]^{\rm ccp}$

Relational meaning of a non-modal question

$$\llbracket ?\varphi \rrbracket^{\sigma} = \{ \langle \langle w, o, g \rangle, \langle w', o', g \rangle \rangle \in \sigma \times \sigma \, | \, \llbracket \varphi \rrbracket^{w,g} = \llbracket \varphi \rrbracket^{w',g} \}$$

Relational meaning of an EMQ

$$\begin{split} & \llbracket ? \diamondsuit \varphi \rrbracket^{\sigma} = \{ \langle \langle w, o, g \rangle, \langle w', o', g \rangle \rangle \in \sigma \times \sigma \mid \min_{\leq_{\sigma}} (\sigma^{s}) \cap \llbracket \varphi \rrbracket^{g} \neq \\ & \varnothing \mapsto \min_{\leq_{\sigma'}} (\sigma^{s}) \cap \llbracket \varphi \rrbracket^{g} \neq \varnothing \} \end{split}$$

Université Paris 8 & UMR 7023. CNRS

Laurent Roussarie

What might be known

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○○○●	Conclusion	References
Complex possibilities				
Back to EMC		and to information sp	aces S	

For a simpler formulation:

Relational meaning of an EMQ

$$\llbracket ? \diamondsuit \varphi \rrbracket^{\mathcal{S}} = \{ \langle s, s' \rangle \in \mathcal{S} \times \mathcal{S} \, | \, s \cap \llbracket \varphi \rrbracket \neq \emptyset \Leftrightarrow s' \cap \llbracket \varphi \rrbracket \neq \emptyset \}$$

・ロト・日本・モート モー うへの

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences ○○○○○○○●	Conclusion	References
Complex possibilities				
Back to EMG	·	and to information sp	aces S	

For a simpler formulation:

Relational meaning of an EMQ

$$\llbracket ? \diamondsuit \varphi \rrbracket^{\mathcal{S}} = \{ \langle s, s' \rangle \in \mathcal{S} \times \mathcal{S} \mid s \cap \llbracket \varphi \rrbracket \neq \emptyset \Leftrightarrow s' \cap \llbracket \varphi \rrbracket \neq \emptyset \}$$

• EMQs do not only ask about the (state of) world but also about the context.

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References

Concluding remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References
Concluding	remarks			

• EMQs do not only ask about the (state of) world but also about the context.

Laurent Roussarie What might be known Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 000000000	C on clu sion	References
Concluding	g remarks			

- EMQs do not only ask about the (state of) world but also about the context.
- Requirement (H2): several possible values must be assigned to the variable *O*, ie several ordering sources must be present in the context.

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References

Perspectives and future work

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 000000000	C on clu sion	References
Perspective	es and future	work		

- Constituent questions:
 - (3) Qui peut/pourrait être le coupable ? Who may/might be the culprit?

Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposal 0000000	Consequences 0000000000	C on clu sion	References
Perspectives	s and future	work		

- Constituent questions:
 - (3) Qui peut/pourrait être le coupable ? Who may/might be the culprit?
- Necessity operators:
 - (4) Who must she have hired for that job?

Formal issues 000000	Proposal 0000000	Consequences 0000000000	C on clu sion	References
Perspective	s and future	e work		

• Constituent questions:

(3) Qui peut/pourrait être le coupable ? Who may/might be the culprit?

Necessity operators:

(4) Who must she have hired for that job?

• Epistemic adverbs

- (5) a. #Hitch est-il peut-être le coupable ?
 - Is Hitch perhaps the culprit?
 - b. #Hitch est-il sûrement/certainement le coupable ? Is Hitch surely/certainly the culprit?

Formal issues 000000	Proposal 0000000	Consequences 0000000000	C on clu sion	References
Perspective	s and future	work		

- Embedded EMQs:
 - (6) a. The detective knows whether Hitch might be the culprit.
 - b. The detective wonders whether Hitch might be the culprit.
- Relationship between EMQ and special/biased questions
 - (7) Où peut bien se cacher le coupable ?! Where (the hell) can the culprit be hidden?!
 - (8) Comment Hitch peut-il être le coupable ? How can Hitch be the culprit?

Laurent Roussarie What might be known Université Paris 8 & UMR 7023, CNRS

Formal issues 000000	Proposa l 0000000	Consequences 000000000	Conclusion	References
0	B. (2001). On the y of Tübingen.	e syntactic form of epi	istemic modality. Ms	S.,
modality.	In Gendler, T. S.	S. (2007). An opinior and Hawthorne, J., 6 62. Oxford University	editors, <i>Oxford Stud</i>	
Universit	y of Michigan, to	S. (2008). <i>Might</i> mad appear in a volume of erson, Oxford Universi	n epistemic modality	
	K. and latridou, S 34(2):173–198.	. (2003). Epistemic c	ontainment. <i>Linguis</i>	tic
Matthew	s, T. and Strolovi	ogic of interrogation: tch, D., editors, <i>Proce</i> IX, pages 109–126, Itl	eedings of Semantics	s and

Press.

Groenendijk, J. and Stokhof, M. (1984). Studies on the Semantics of *Questions and the Pragmatics of Answers*. Doctoral dissertation, University of Amsterdam.

Groenendijk, J. and Stokhof, M. (1989). Type-shifting rules and the semantics of interrogatives. In Partee, B. and Turner, R., editors, *Properties, Types*

Laurent Roussarie

Formal issues 000000	Proposal 0000000	Consequences	Conclusion	References
	n <i>ings. Vol. 2: Sema</i> , Dordrecht.	<i>ntic Issues</i> , pages 2	1–68. Kluwer Academic	:
modality.		or, Handbook of Co	96). Coreference and ontemporary Semantic	
•	()	0	Falling Declaratives as California Santa Cruz.	
· · · ·	92). Presupposition ournal of Semantics,	1 5	e semantics of attitude	
	R. (1972). <i>Semanti</i> ss, Cambridge.	ic Interpretation in	Generative Grammar. 7	Гhе
Rieser, H	. ,	Vorlds, and Context	ality. In Eikmeyer, HJ <i>s. New Approaches to</i> Co., Berlin.	

Kratzer, A. (1991). Modality. In von Stechow, A. and Wunderlich, D., editors, Semantik/Semantics. An International Handbook of Contemporary Research, pages 639–650. Walter de Gruyter, Berlin-New York.

Stalnaker, R. C. (1978). Assertion. In Cole, P., editor, *Pragmatics*, volume 9 of *Syntax and Semantics*, pages 315–332. Academic Press, New York.

Formal issues 000000	Proposal 0000000	Consequences 000000000	Conclusion	References

Stephenson, T. (2007). Judge dependence, epistemic modals, and predicates of personal taste. *Linguistics & Philosophy*, 30(4):487–525.

<ロト < @ ト < 臣 ト < 臣 ト 三 の < 0</p>

Université Paris 8 & UMR 7023, CNRS