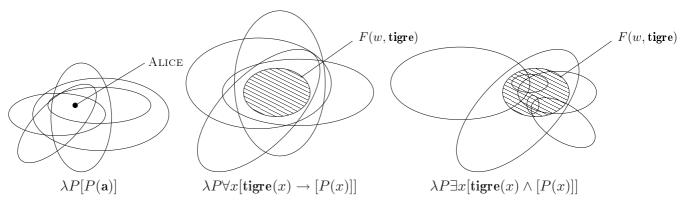
Type-shifting

Sémantique 4, L. Roussarie

2006

1 Le type des GN

Montague (1973): tous les GN sont de type $\langle \langle e, t \rangle, t \rangle^1$. Ce sont des quantificateurs généralisés. Tous sont donc ramenés au type le plus complexe.



Argument des conjonctions : on peut conjoindre (avec et, ou) deux NP s'ils ont le même type.

(1) Blanche-Neige et chaque nain...

$$\begin{array}{ccc} e & et & \langle \langle e, t \rangle, t \rangle \\ \langle \langle e, t \rangle, t \rangle & et & \langle \langle e, t \rangle, t \rangle \end{array}$$

Partee & Rooth (1983): Les NP reçoivent lexicalement le type le plus simple; puis ce type peut être complexifié si l'environnement syntaxique l'exige.

Partee (1987) : Les NP peuvent « voyager » d'un type à l'autre, parmi e, $\langle e, t \rangle$, $\langle \langle e, t \rangle, t \rangle$, selon des règles précises et linguistiquement naturelles.

2 Opérateurs de *type-shifting*

Principe du type-shifting: une expression X de la langue initialement traduite dans LO par l'expression α de type τ_1 est analysée en α' de type τ_2 ($\neq \tau_1$).

Comment passer d'un type à l'autre?

Proposition : une opération de changement de type peut être effectuée par une fonction, donc un λ -terme, dont le type est $\langle \tau_1, \tau_2 \rangle$.

Et cette fonction est activée par la structure syntaxique².

Exemple: changement de type de Z dans [X Y Z]

¹En fait c'est inexact. Dans Montague (1973), les GN sont de type $\langle \langle s, \langle \langle s, e \rangle, t \rangle \rangle, t \rangle$.

²NB : cette proposition de mise en œuvre technique du *type-shifting* est sujette à controverse. En effet si le *type-shifting* induit un changement de sens, certains syntacticiens refusent de considérer qu'une règle syntaxique produise un tel changement.

Application à la promotion des adjoints :

$$\mathbf{PrAd} = \lambda P \lambda Q \lambda x [[Q(x)] \wedge [P(x)]] \text{ de type } \langle \langle \mathbf{e}, \mathbf{t} \rangle, \langle \langle \mathbf{e}, \mathbf{t} \rangle, \langle \mathbf{e}, \mathbf{t} \rangle \rangle \rangle$$

 $P,Q \in \mathcal{V}ar_{\langle e,t \rangle}$

$$\begin{array}{ccc}
N & \to & N & AP \\
\downarrow & & \downarrow & \downarrow \\
[\mathbf{PrAd}(\gamma)](\beta) & \leftarrow & \beta & \gamma
\end{array}$$

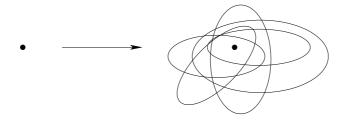
2.1 De e à $\langle \langle e, t \rangle, t \rangle$

e est le type dit référentiel : noms propre, pronoms personnels, descriptions définies.

 $\langle \langle e, t \rangle, t \rangle$ est le type dit quantificationnel : NP quantificationnels.

Fonction de montée de type : lift = $\lambda x \lambda P[P(x)]$ de type $\langle e, \langle \langle e, t \rangle, t \rangle \rangle$.

Cette fonction **lift** prend un individu (type e) et retourne toutes ses propriétés, ou encore : tous les ensembles qui contiennent l'individu.



Chemin inverse (de $\langle\langle e,t\rangle,t\rangle$ à e) : consiste à passer d'un ensemble d'ensembles à un individu ; quel individu extraire ? ne marche pas à tous les coups.

2.2 De et vers $\langle e, t \rangle$

 $\langle e, t \rangle$ est le type dit *prédicatif* : noms communs, adjectifs.

Construire un NP à partir d'un N c'est donc passer de $\langle e,t\rangle$ à e ou $\langle \langle e,t\rangle,t\rangle$. Mais ce n'est pas du type shifting à proprement parler car l'opération est assurée compositionnellement par un déterminant.

2.2.1 De $\langle e, t \rangle$ à e

Qu'est-ce que ça veut dire? On passe d'un ensemble d'individus $(\langle e, t \rangle)$ à un individu (e). Quel individu prendre? Plusieurs possibilités.

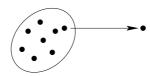
1) Si l'ensemble est un singleton $(\{a\})$, on prend son (unique) élément (a). C'est ce que fait l'opérateur i. Fabriquons la fonction **iota**; elle est un moyen de traduire l'article défini singulier.

 $le \rightsquigarrow \mathbf{iota} = \lambda P \imath x [P(x)] \text{ de type } \langle \langle \mathbf{e}, \mathbf{t} \rangle, \mathbf{e} \rangle.$

Que vaut **lift(iota(roi))**?

2) Si l'ensemble est non vide, on peut prendre... n'importe quel élément. Une fonction qui fait cela s'appelle une fonction de choix. Elle est de type $\langle \langle e, t \rangle, e \rangle$.

 $\llbracket \mathbf{choix}(P) \rrbracket^{\mathcal{M},w,g} = \mathsf{d} \text{ ssi } \llbracket P(x) \rrbracket^{\mathcal{M},w,g_{\lfloor \mathbf{d}/x \rfloor}} = 1, \text{ ie s'il y a un individu d qui vérifie } P^3.$

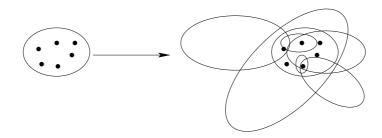


3) ... On verra d'autres façons régulières de passer d'un ensemble à un individu.

³Pour représenter cela dans un langage formel comme lo, on ajoute parfois un lieur ε : **choix** = $\lambda P \varepsilon x [P(x)]$.

2.2.2 De $\langle e, t \rangle$ à $\langle \langle e, t \rangle, t \rangle$

 $un \rightsquigarrow \lambda P \lambda Q \exists x [[P(x)] \land [Q(x)]] \text{ de type } \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle.$



 $tout \sim \lambda P \lambda Q \forall x [[P(x)] \rightarrow [Q(x)]] \text{ de type } \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle.$

Partee (1987) propose aussi⁴ LE = $\lambda P \lambda Q \exists x [\forall y [P(y) \leftrightarrow y = x] \land Q(x)]$

2.2.3 Vers $\langle e, t \rangle$

Pourquoi changer le type d'un NP en $\langle e, t \rangle$? $\langle e, t \rangle$ est le type du « complément » de la copule *être*. *être* $\rightarrow \lambda P \lambda x [P(x)]$ de type $\langle \langle e, t \rangle, \langle e, t \rangle \rangle$

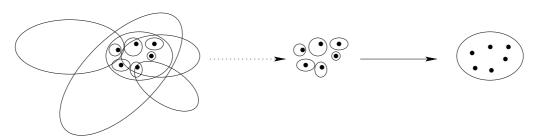
De e **vers** $\langle e, t \rangle$. Il s'agit de créer un ensemble à partir d'un individu. Un manière simple consiste à fabriquer l'ensemble singleton $\{a\}$ à partir de a.

$$ident = \lambda x \lambda y [y = x]$$

De $\langle \langle e, t \rangle, t \rangle$ **vers** $\langle e, t \rangle$. On part d'un ensemble d'ensembles d'individus et on retourne un ensemble d'individus. Là encore, plusieurs façons de procéder : on peut prendre un ensemble « au hasard »⁵, mais ce n'est pas très intéressant a priori ; on peut aussi prendre l'intersection commune de tous les ensembles⁶, mais elle n'est pas toujours définie.

Partee propose la fonction \mathbf{BE}^7 qui cherche tous les singletons de l'ensemble d'ensembles et range leurs contenus dans un ensemble.

$$\mathbf{BE} = \lambda \mathcal{Q} \lambda x \left[\mathcal{Q}(\lambda y [y = x]) \right]$$



Ainsi $[\![\mathbf{BE}(un\ tigre)]\!]^{\mathcal{M},w,g} = [\![\lambda x\ \mathbf{tigre}(x)]\!]^{\mathcal{M},w,g}$. Démonstration :

 $\mathbf{BE}(un\ tigre)$

- $= \mathbf{BE}(\lambda P \exists z [\mathbf{tigre}(z) \wedge [P(z)]])$
- $= \lambda \mathcal{Q} \lambda x \left[\mathcal{Q}(\lambda y[y=x]) \right] (\lambda P \exists z[\mathbf{tigre}(z) \wedge [P(z)]])$
- $= \lambda x \left[\lambda P \exists z [\mathbf{tigre}(z) \land [P(z)]](\lambda y [y = x])\right]$
- $= \lambda x \,\exists z [\mathbf{tigre}(z) \wedge [\lambda y[y=x](z)]]$
- $= \lambda x \,\exists z [\mathbf{tigre}(z) \wedge [z = x]] = \lambda x \,\mathbf{tigre}(x) \text{ (par définition)}$

⁴En fait, chez Partee (1987), la fonction s'appelle **THE**, bien sûr.

⁵Le λ -terme qui fait cela est : $\lambda \mathcal{Q} \lambda x \exists P[\mathcal{Q}(P) \wedge P(x)]$

⁶Le λ-terme qui construit cette intersection est $\lambda \mathcal{Q}\lambda x \forall P[\mathcal{Q}(P) \leftrightarrow P(x)]$.

⁷Remarque : cette fonction **BE** est d'ailleurs la traduction que Montague (1973) donne pour le verbe *to be*.

En revanche $[\![\mathbf{BE}(tout\ tigre)]\!]^{\mathcal{M},w,g} = \varnothing^8$, car $[\![\mathbf{BE}(tout\ tigre)]\!] = \lambda x \forall y [\mathbf{tigre}(y) \to [y=x]]$. Or:

(2) *Hobbes est tout/chaque tigre.

3 Bilan

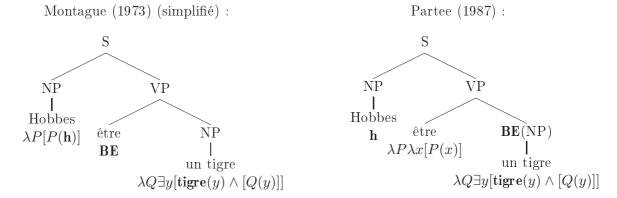
Changement de type = changement de sens?

Le type-shifting peut être vu comme une manière de conditionner l'information sémantique. Compositionnellement, les contributions sémantiques peuvent être réparties différemment,

mais à l'arrivée l'analyse sémantique de la phrase est la même.

Exemple:

(3) Hobbes est un tigre.



Autre possibilité : $un \ tigre \rightsquigarrow \lambda y \ \mathbf{tigre}(y)$

Correlation entre propriétés sémantiques des NP et types :

- NP référentiels plutôt de type e;
- NP quantificationnels plutôt de type $\langle \langle e, t \rangle, t \rangle$;
- NP indéfinis? $\langle e, t \rangle$ ou $\langle \langle e, t \rangle, t \rangle$ ou e... c'est selon...

Références

Montague, Richard (1973). The proper treatment of quantification in ordinary English. In K. J. J. Hintikka, J. M. E. Moravcsik, et P. Suppes (éds.), *Approaches to Natural Language* (pp. 221–242). Dordrecht: Reidel.

Partee, Barbara (1987). Noun phrase interpretation and type-shifting principle. In J. Groenendijk, D. de Jongh, et M. Stokhof (éds.), *Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers* (pp. 115–144). Dordrecht: Foris.

Partee, Barbara et Rooth, Mats (1983). Generalized conjunction and type ambiguity. In R. Bauërle, C. Schwarze, et A. von Stechow (éds.), *Meaning, Use, and Interpretation of Language* (pp. 361–383). Berlin: Walter de Gruyter.

⁸Sauf s'il n'y a qu'un seul tigre dans le domaine.