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tIn this paper, we present a do
ument stru
turing model for mathemati
al prooftext generation. This model takes as input the output of a Proof assistant andprodu
es do
ument plans from whi
h we 
an generate text proofs with a stru
tureapproa
hing as mu
h as possible human-written proofs. In order to do this, ourmodel has to abstra
t away from the purely logi
al proof stru
ture. Our solutionis to integrate some intentional information to enri
h the rhetori
al stru
ture of the�nal text.1 Introdu
tion and motivationIn this 
ommuni
ation, we wish to address a spe
i�
 appli
ation of a theoremprover in 
omputational linguisti
s, namely the natural language generationof mathemati
al proofs. More pre
isely, the issue we are 
on
erned with is:how a stru
tured 
omputer-generated proof 
an be translated into a dis
oursestru
ture approa
hing as mu
h as possible human-written proofs. This raisesthe problem of the one-to-many 
orresponden
es between the global logi
alstru
ture of a text and the linguisti
s (viz. semanti
 and rhetori
al) meansone 
an use to express this stru
ture.It is well known that one of the main weak points of natural languagegeneration (nlg) is the de�nition of input formats. Input formats are usuallytightly 
onstrained by the domain and/or the appli
ation to whi
h the gener-ator is 
onne
ted. And this often leads to adapting very 
ustomised strategiesfor the deep generation pro
ess, whi
h seriously slows down the resear
h in
nlg, as soon as one attempts to see it as a genuine bran
h of 
omputationalsemanti
s.
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Plugging an nlg system to a theorem prover is s
ienti�
ally interestingbe
ause the output of the prover is expe
ted to be en
oded in a non ad ho
language (i.e. logi
al formulae) whi
h is moreover very 
lose the language oflinguisti
 meaning representation in the frameworks of formal model-theoreti
semanti
s. Indeed, a mathemati
al proof has a stable and a well de�ned formalstru
ture: a natural dedu
tion proof is, for example, a hierar
hy of elimina-tion and introdu
tion rules appli
ation, that we 
all a proof tree. From asemanti
 point of view, su
h a stru
ture 
an be interpreted as a sequen
e ofinferen
es (whi
h may be embedded). Therefore, we 
an intuitively assumethat the information given by the proof tree, gives us not only the semanti

ontent of the proof text, but also some information about its argumenta-tive and rhetori
al stru
ture. This point has been made and used in numberof previous works in natural language proof generation ([8,7℄) whi
h elabo-rate proof tree exploration strategies. Those strategies attempt to build ado
ument plan by arranging and grouping portions of the proof tree. Now,the texts produ
ed this way are 
orre
t and 
lose to formal proof, but theyare stereotyped, unnatural, fastidious and extremely hard to read. We thinkthat a possible explanation of those drawba
ks is the di�
ulty to re
ognisewhat should be done by 
ontent determination module vs. do
ument stru
-turing module. Moreover, even though the proof tree stru
ture 
onstrains therhetori
al stru
ture, it does not fully de�ne it. Empiri
ally we noti
e thata proof text reports not only the proof tree stru
ture but also the reasoningme
hanism used in the proof.In this paper, we present an original strategy of text proof planning, whi
hattempts to produ
e more natural and 
loser to hand-written text proofs.The broad outline of our strategy is detailed through the presentation of theGePhoX system [5℄, whi
h is a natural language proof generation system, theformal proofs from whi
h we generate the text being obtained with the proofassistant PhoX [12℄. GePhoX is intended to help mathemati
ians usingPhoX; and also to be used for 
omputer assisted logi
 tea
hing [11℄.We fo
us on the generator What-to-say? module, whose organisation fol-lows the standard ar
hite
ture [13℄ in two sub-modules (�gure 1) :ContDet in 
harge of 
omputing the 
ontent to be expressed from the PhoXoutput, this 
al
ulus takes into a

ount the user 1 knowledge,Do
Stru
t in 
harge of dis
ourse plan 
al
ulus.The dis
ourse plans presented here are sdrs, following the sdrt formalism[2,1℄. This 
hoi
e is doubly motivated: on the one hand our model is based onthe do
ument stru
turing model in [6℄, whi
h shows the e�e
tiveness of sdrtfor deep generation; and on the other hand we adopt the 
on
lusions rea
hedby [14℄, namely that drt (and impli
itly sdrt) o�ers a parti
ularly adaptedformalism for analysing and representing mathemati
al texts.
1 We designate by user the GePhoX generated text re
ipient, and by reda
tor the PhoXuser 2



T−Box

SDRS

à la SDRT
DocStuct

ConDet

A−Box

A−Box

Content
determination

Document
structuring

Message (ABox)

Domain

User

goals
Communicative 

Fig. 1. What-to-say? module ar
hite
ture2 Content determination : the ContDet moduleThe proof assistant PhoX allows one to 
onstru
t mathemati
al proofs onthe 
omputer, and guarantee the validity of the written proofs. Even if thesoftware has an automated dedu
tion 
apability, the main use of PhoX � bymathemati
ians and espe
ially for tea
hing mathemati
s � is to 
he
k thatea
h step of the proof is 
orre
t. To build a proof, the reda
tor guides the
omputer in the reasoning, and the software deals with the veri�
ations andthe fastidious steps of the proof.2.1 GePhoX inputGePhoX takes as input two kinds of informations: the proof s
ript represent-ing the 
ommands entered by reda
tor, whi
h is also a tra
e of the proof, andthe PhoX output formed by fragments of the proof tree, whi
h 
an be takenas the proof 
ontent.The ContDet module has to 
ompute from the input, taking into a

ountthe user knowledge, the message that will be expressed by the generator. The�gure 2 illustrates the treated input. One of the pe
uliarities of GePhoX isthat the text produ
ed has to follow as mu
h as possible the stru
ture en
odedin the proof s
ript.2.2 Knowledge basesIn GePhoX, the input is represented with 
on
epts and roles of a des
riptionlogi
 (dl, 
f.[4℄). Domain and user spe
i�
 knowledge are respe
tively en
odedin two knowledge bases: dkb and ukb (where ukb is a sub-set of dkb). Thoseknowledge bases 
onsist of two di�erent parts. On the one hand, the T-Box(for terminologi
al knowledge) en
odes intensional knowledge, i.e. domain(resp. user) 
on
epts and roles. For example, the 
on
ept Entier des
ribesthe set of natural numbers, in addition, the axioms are used to representreasonning strategies. 3



Proof s
ript PhoX outputdef Q m = m > 0 ∧ ∃n ∈ N (m2 = 2 ∗ n2). Q = λm (m > 0 ∧ ∃n ∈ N (m2 = 2 ∗ n2) : nat → proplem de
 ∀m ∈ N(Qm → ∃m′ ∈ N (Qm′ ∧ m′ < m)). de
 = ∀m ∈ N (Qm → ∃m′ ∈ N(Qm′ ∧ m′ < m)) :theoremlem sq2_irrat ∀m ∈ N ¬Qm. sq2_irrat = ∀m ∈ N ¬Qmtheoremtheorem square2_irrat ∀m, n ∈ N (m2 = 2 ∗ n2 → m = 0 ∧ n = 0). goal 1/1 ⊢ ∀m, n ∈ N (m2 = 2 ∗ n2 → m = 0∧ n = 0)intros. apply sq2_irrat with H. goal 1/1H := m ∈ N, H0 := n ∈ NH1 := m2 = 2 * n2, G := ¬Qm

⊢ m = 0 ∧ n = 0elim H with [
ase℄. goal 1/2 goal 2/2H2 := m = 0 H2 := y ∈ N

⊢ 0 = 0 ∧ n = 0 H3 := m = S y
⊢ S y = 0 ∧n = 0... ...Fig. 2. Fragment of GePhoX input for �√2 is ir rational �On the other hand, the A-Box (for assertional knowledge) en
odes exten-sional knowledge, i.e. the individuals of our universe. For instan
e, n ∈ Entierintrodu
es an individual n belonging to the 
on
ept Entier.2.3 Content 
al
ulusThe general prin
iple of 
ontent 
al
ulus is the following. We must �rst buildthe 
on
eptual expressions (T-Box) representing the input. While doing this,we have to keep in mind a set I of individuals to whi
h they are asso
iated.The 
ontent determination operates on this T-Box 2 .Finally, the 
on
eptual expressions are instan
iated using the individualsin I to produ
e an A-Box (a set of fa
ts) representing the message to begenerated.The ContDet module starts with the translation task, meaning that theinput of the generator is translated into dl, using the 
on
epts and roles ofdkb. If the de�nitions and theorems resulting from PhoX are not presentin the knowledge base, the translation pro
edure is able to dynami
ally 
re-ate new 
on
epts using the 
on
epts and roles whi
h are known, and ax-ioms 
orresponding to de�nitions and theorems. For example, the de�nitiondef Q m = m > 0 ∧ ∃n ∈ N (m2 = 2 ∗ n2) will give us the 
on
ept Q de�nedby: Q .

= Ensemble ∧ ∃sous-ensemble.{N∗} ∧ ∃eq-def.{∃n ∈ N (m2 = 2∗n2)} 3 .On
e we have built the set ECD of 
on
eptual expressions representing ourinput, the ContDet module will sele
t in this set what we must say.To do this we use �ltering and grouping operations, to de
ide on the sele
-tion. The �rst operation 
onsists in dete
ting the reasoning strategies and their
2 Two reasons motivate this 
hoi
e: the �rst one is te
hni
al, in dl the reasoning is easieron T-Box. The se
ond, more theoreti
al, is due to the use of the 
on
eptual expressions inthe lexi
alization pro
ess, but this does not fall within the s
ope of the present paper.
3 {c} represents the 
on
ept 
ontaining only the individual c.4



parameters: for instan
e, re
ognizing that the 
ommand �elim H with [
ase℄�
orresponds to the announ
ement of a 
ase reasoning, the system 
omputesthe di�erent 
ases and asso
iates them with this announ
ement.The se
ond operation is to highlight the similarities between di�erent stepsin the proof. For this we use 
on
ept uni�
ation [3℄.Finally, ContDet attempts to mat
h the 
omplex 
on
ept de�nitions inthe dkb with the expressions in ECD. This allows one to synthesize sets ofmore or less simple information to be asso
iated with a prede�ned 
on
ept inthe knowledge base (this operation is generally named aggregation in naturallanguage generation).The axioms (i.e. de�nitions in the dkb) used for this task are subsequentlykept in mind to 
al
ulate se
ond order relations on the elements of ECD.The obtained T-Box gives a proof representation using all the 
on
eptsof the domain. To produ
e 
ooperative and personalized texts, we need to
ompare this representaion with the user knowledge (ukb), in order to makesure that he/she 
an understand the 
ontent of ECD. This 
omes down toexplaining (i.e. de
omposing) the ECD 
on
epts whi
h are not present in theukb. This gives us a new ECU 
on
eptual expression set, whi
h is 
al
ulatedby proje
tion of ECD in the ukb.The last step of 
ontent determination is to instan
iate the expressions in
ECU with the individuals in I and to verify the 
onsisten
y of the obtainedA-Box fragment.3 Do
ument stru
turingThe �gure 3 gives an example of the ContDet output 4 . This kind of stru
ture
an be seen as an ordered 5 set of logi
al forms marking the signi�
ant stepsof the proof.The axioms that allow us to build 
ertain A-Boxs are given in the se
ond
olumn. Moreover, the given stru
ture is ri
her than a simple proof tree, sin
ethe ContDet module ensures that they 
ontain some elements of informationfrom the proof s
ript.A 
entral point in our deep generation strategy 
onsists in exploiting thisri
hness, 
onsidering that the proof s
ript steps translated into logi
al forms
an be assimilated to 
ommuni
ative intentions. Those intentions allow usto generate spee
h a
ts whi
h � humanise � the proof text, by in
luding in itsome rhetori
al elements other than the usual logi
al relations.The do
ument plan 
al
ulus is taken into a

ount by the Do
Stru
t mod-ule. We adopt here the do
ument stru
turing model proposed by [6℄. TheDo
Stru
t module is in 
harge of two main tasks in order to produ
e a do
-
4 The notation p1 = Prop(�m2 = ...�) is a short
ut for Prop(p1) ∧ 
onstant(p1,�m2 = ...�).
5 The order is imposed by the semanti
s of the dynami
 
onjun
tion ∧ whi
h is not sym-metri
al. In the �gure 3, the enumeration of logi
al forms is given to improve readability.5



Logi
al forms (ABox) AxiomsA sous-ensemble(Q,N∗) ∧ Q .
= Ensemble∧define(Q,�∃n ∈ N (m2 = 2 ∗ n2)� ) ∃sous-ensemble.{N∗} ∧

∃eq-def.{∃n ∈ N (m2 = 2 ∗ n2)B Entier(m) ∧ neg-Q(m) neg-Q .
= ¬ QC t1 = not-in(sqrt−2,Q) ∧ Theoreme(t1) ∧ annon
e(t1)1. Entier(m) ∧ Entier(n) ∧ 
hoose(m) ∧ 
hoose(n)2. p1 = Prop(�m2 = 2 ∗ n2�) ∧ suppose(p1)3. l1 = lemme(�lemme1�)4. neg-Q(m) ∧ implies(e3,e4)D 5. CaseReason(current) // the reda
tor start a 
ase reasoning6. is-
ase(current,e6) ∧ Nul(m)7. Nul(n) ∧ implies(e6,e7)8. is-
ase(current,e8) ∧ Entier-non -nul(m)

. . . . . .Fig. 3. Fragment of the message for �√2 is irrational � (ContDet Output)ument stru
ture: 1) 
hoosing the minimal stru
tural units, 2) 
hoosing therhetori
al relations linking the units among them, to ensure dis
ourse 
ohe-sion and 
oheren
e.3.1 Segmentation of the logi
al forms setThe A-Box 6 stru
ture 
al
ulated by the ContDet module 
an be viewed as a
onne
ted 7 graph (the nodes des
ribe individuals and the edges the 
on
ep-tual roles or relations). In this graph, 
ertain subgraphs are strongly 
onne
ted(pseudo-
liques). Our strategy is to 
onsider them as the sour
e of minimaldis
ourse units, i.e. minimal 
ontent segments.Furthermore, the subgraphs are 
onne
ted with dependen
y relations thatwe assimilate to high order relations, bearing on the dis
ourse units. Su
h arelation 
orresponds either to a s
ript 
ommand or to the result of an axiomappli
ation (e.g. dedu
tion, 
on
lusion...). This me
hanism is illustrated inthe s
hema:
Segments

High order relations

6 Our logi
al forms are in fa
t a fragment of the A-Box
7 We only 
onsider here the 
ase of a single 
onne
ted graph; if we have a graph 
omposedof several non-
onne
ted subgraphs, the Do
Stru
t module treats them separately. In ourmessage (�gure 3) the lines A, B, C and D represent the un
onne
ted subgraphs of ourinput. 6



The segmentation result is given in the left 
olumn of the �gure 3, in whi
hea
h line 
orresponds to a dis
ourse segment.As previously stated, our future do
ument plan will be formalised in sdrt,i.e. it will be a sdrs (Segmented Dis
ourse Representation Stru
ture) [2℄. Ansdrs is a stru
ture in whi
h dis
ourse 
onstituents are 
onne
ted by rhetori
alrelations. The 
onstituents are dynami
 semanti
 representations inheritedfrom the drt, namely drss. The segments in �gure 3 will be translated intodrss, and a

ording to [6℄, this operation will take pla
e at the same timewith the rhetori
al relations sele
tion.3.2 Rhetori
al relations 
al
ulusThe model proposed by [6℄ is de
larative. The main idea is that rhetori
alrelations are asso
iated to meaning postulates whi
h in turn are 
onsideredas 
onditions (triggers) of sele
ting a valid relation. The 
onditions are for-mulated in the same language as input logi
al forms in order to allow dire
tasso
iations.The �gure 4(a) illustrates su
h an asso
iation with a Resultat rule, whi
hin sdrt expresses a 
ausality relation between two senten
es. The rule hasthe following form: 
onditions → sdrs. The sdrs on the right-hand sideis a dis
ourse 
omponent in whi
h the rhetori
al relation triggered is instan-tiated. The fun
tion Cal
ulate_SDRS will be developed in � 3.3; it is partof the stru
turing pro
edure and allows re
ursive 
onstru
tion of dis
ourse.The sdrs obtained in �gure 4(a) 
an produ
e the text 8 : � Senten
e1. Don
Senten
e2. � 9 . Let us mention that, following [6℄, a 
ondition su
h as im-plies(e1, e2) is not ne
essarily asso
iated with a rhetori
al relation; it may forinstan
e be asso
iated with a predi
ate (� verbal �) whi
h gives rise to andrs (� X1 implique X2. � 10 , � de X1 on obtient X2. � 11 or � X2 se déduit deX1 �). 12Dis
ourse relations rulesResultat :implies(e1, e2) → π1 π2

π1 : Cal
ulate_sdrs(e1)
π2 : Cal
ulate_sdrs(e2)Resultat(π1, π2)(a)

Case reasonning s
hema1 21 : 3 4 5 6Consequen
e( 3 , 4 )Consequen
e( 5 , 6 ) 2 : Con
ludeConsequen
e( 1 , 2 ) (b)Fig. 4. Rhetori
al stru
turing rules and s
hema
8 Our system produ
e fren
h texts, so
9 � Senten
e1. therefore Senten
e2. �
10 � X1 implies X2. �
11 � from X1 we obtain X2. �
12 � X2 is dedu
ed from X1 � 7



However our strategy di�ers from [6℄ in many points. On the one hand, thelogi
al forms of our do
ument stru
turing input 
ontain informations whi
h
an re�e
t 
ommuni
ative intentions. This allows us to sele
t from a widerange of rhetori
al relations, mainly by varying the illo
utionary for
es. Wefollow in this the [2℄ hypothesis assuming that the arguments of rhetori
alrelations should be spee
h a
ts tokens, and that the relations indu
e an illo-
utionary typing. In our appli
ation, we have to translate �proving a
ts� (thePhoX 
ommands typed by the reda
tor) into spee
h a
ts. The rules are sim-ilar to those in �gure 4(a) ex
ept that when a triggering 
ondition has been
omputed from an operation from the proof s
ript, it 
an yield an imperative
lause. For instan
e, a 
ondition su
h as 
hoose(n) 
an produ
e an indi
ative(�on 
hoisit n...� 13 ) or an imperative (�soit n...� 14 ). Indeed, following [9℄,we assume that imperatives denote a
tions whose semanti
 
ontributions isto 
hange the 
ontext like a (deonti
) modal operator; now in text proofs, ithappens that the a
tions denoted by imperatives usually 
orrespond to somesteps of the demonstration pro
ess.Another parti
ularity of our approa
h 
omes from the treatment of reason-ing strategy announ
ements mentioned in the logi
al form and 
al
ulated fromthe proof s
ript. Su
h an announ
ement does not dire
tly trigger a rhetori
alrelation, but a rhetori
al s
hema asso
iated with the reasoning strategy. As
hema is in fa
t a 
omplex stru
ture 
ontaining a 
ertain number of relations.For example, the 
ase reasoning s
hema is given in �gure 4(b). Using the proofs
ript information allows us to skip some proof portions along the line of the
hosen s
hema to produ
e a 
oarse grained text.This treatment 
an be motivated by a 
ommon property of reasoningstrategies, that is their dependen
y on fundamental theorems (e.g. the elimi-nation of ∨ for 
ase reasoning) that are never expli
ited in the text proofs, butwhi
h indu
e pre
ise dis
ourse 
on�gurations (e.g. a sequen
e of � si...,alors... � 15for 
ase reasoning). Su
h a triggered s
hema 
ontains just a rhetori
al skeletonwhi
h will be later on shaped to �ll the logi
al form 
ontent.3.3 AlgorithmThe algorithm takes as input a list of logi
al forms in order to produ
e thedo
ument plan: an sdrs. It works in an in
remental way and a
hieves twodi�erent treatments: one is a
tivates rhetori
al s
hema, i.e. 
omplex sdrstrigged by reasoning strategies or intentional 
onditions, we 
hoose a rhetori
als
hema SCH, 
onstru
t re
ursively the SDRSs 
orresponding to the elementsof SCH and then saturate it; the se
ond implements a de
larative treatmentà la [6℄ for simple rules like Resultat (�gure 4a).
13 �We 
hoose n ...�
14 �Let n ...�
15 � if...,then... � 8



Cal
ulate_SDRS(listeFL)for Ci in listeFLif Ci 
ontains a strategy or intentional 
onditions Sithen
hoose a s
hema SCHifor ea
h Li,j in SCHi// where Li,j is an element of SCHiSDRSi,j = Cal
ulate_SDRS(FLi,j)// where FLi,j is the formula asso
iated to Li,jSDRSi = result of �lling SCHi with {SDRSi,j}jelseSDRSi = Cal
ulate_DRS(Ci) // following the algorithm of [6℄return SDRSiApplying the do
ument stru
turing algorithm to the message in �gure 3,produ
e, as a possible solution, the do
ument plan represented in �gure 5.
π1: m, n
hoose(m)
hoose(n) Narration(π1 , π′

1
)

π′

1
:

π2: m2, n2, p1suppose(p1)name(p1,�m2= 2 ∗ n2�)
m2 = m n2 = n

Narration(π2, π′

2
)

π′

2
:

π3: lemme(l1)name(l1, �lemme 2�)appel(l1) π4: m4neg-Q(m4)
m4 = m

Result(π3,π4)
π5:

π6π7

π6:
π8π′

8
π9π′

9

π8: m8nul(m8)
m8 = m

π′

8
: n8nul(n8)

n8 = n

π9: m9entier-non-nul(m9)
m9 = m

π′

9
: π10: d1de�nition(d1)name(d1, �de�nition 1�)appel(d1) π11: m10Q(m10)

m10 = mResult(π10,π11) ...Consequen
e(π8, π′

8
)Consequen
e(π9π′

9
)

...Fig. 5. A fragment of possible do
ument plan for �√2 is irrational �9



4 Con
lusionThe deep generation model in GePhoX proposes a planning strategy whi
his original for at least two reasons. First, in 
omparison to the existing prooftext automati
 generators, the dis
ourse (plans) produ
ed by GePhoX lookmore natural and 
loser to hand-written proofs. This is due to the spe
i�
ityof the 
ontent determination module ContDet whi
h takes advantage of theproof assistant output, essentially by extra
ting informations of intentionalnature (e.g. the proof s
ript 
ommands).Se
ondly, even if use of intentions in natural language generation is notnew (e.g. 
f. [10℄), the solution presented here, whi
h 
onsist in taking intoa

ount the reda
tor intentions, has the advantage of being simple and el-egant. A
tually, our approa
h is hybrid in that both intentional 
onditionsand informational (semanti
al) 
onditions of the input produ
e the same dis-
ourse stru
tures: fragments of sdrs. These fragments are then assembled onthe basis of a unique pro
edure (whi
h is only 
onstrained by well-formednessrules in sdrt). This way, we 
an moreover avoid the well-known 
omplexityof a separate treatment of 
ommuni
ative goals and rhetori
al stru
tures.The text in �gure 6 illustrates the kind of output produ
ed.De�nition 1. Nous dé�nissons Q 
omme un sous-ensemble de N∗ tel que ∀m ∈ Q on a
∃n ∈ N m2= 2 ∗ n2Lemma 2. Pour tout m ∈ N on a ¬(Qm)Lemma 3. si ∀m, n ∈ N (m2= 2 ∗ n2 → m = 0 ∧ n = 0) alors √

2 /∈ QTheorem. √
2 /∈ QProof. Soit n, m ∈ N. Supposons que m2= 2 ∗ n2. Par le lemme 2 nous avons ¬(Qm). Si

m = 0 nous obtenons fa
ilement n = 0; si m > 0 alors nous avons (Qm) par dé�nition de
Q et don
 une 
ontradi
tion. Don
 ∀m, n ∈ N (m2= 2 ∗ n2 → m = 0 ∧ n = 0), d'après lelemme 3 nous avons don
 √

2 /∈ QFig. 6. A possible text for �√2 is irrational �Referen
es[1℄ Asher, N., �Referen
e to Abstra
t Obje
ts in Dis
ourse,� Kluwer, Dordre
ht,1993.[2℄ Asher, N. and A. Las
arides, �Logi
s of Conversation,� Cambridge UniversityPress, Cambridge, 2003.[3℄ Baader, F. and R. Küsters, Uni�
ation in a des
ription logi
 with transitive
losure of roles, in: R. Nieuwenhuis and A. Voronkov, editors, Pro
eedings ofLPAR 2001, Le
ture Notes in Arti�
ial Intelligen
e 2250 (2001).10



[4℄ Baader, F., D. L. M
Guinness, D. Nardi and P. F. Patel-S
hneider, editors,�Des
ription Logi
s Handbook: Theory, Implementation and Appli
ations,�Cambridge University Press, 2003.[5℄ Danlos, L. and A. El Ghali, A 
omplete integrated NLG system using AI andNLU tools, in: Pro
eeding of COLING'2002, Taipei, Taiwan, 2002.[6℄ Danlos, L., B. Gai�e and L. Roussarie, Do
ument stru
turing à la SDRT, in:Pro
eedings EWNLG'2001, Toulouse, 2001, pp. 11�20.[7℄ Fiedler, A., �User adaptive proof explanation,� Ph.D. thesis, Universität desSaarlandes, Saarbrü
ken, Germany (2001).[8℄ Huang, X. and A. Fiedler, Proof verbalization as an appli
ation of NLG, in:IJCAI'97 Pro
eeding (2), 1997, pp. 965�972.[9℄ Las
arides, A., Imperatives in dialogue, in: Pro
eedings of the 5th InternationalWorkshop on Formal Semanti
s and Pragmati
s of Dialogue (BI-DIALOG2001), Bielefeld Germany, 2001, pp. 1�16.[10℄ Moore, J. D. and C. L. Paris, Planning text for advisory dialogues: Capturingintentional and rhetori
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