Computing the rhetoric of text proofs
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Abstract

In this paper, we present a document structuring model for mathematical proof
text generation. This model takes as input the output of a Proof assistant and
produces document plans from which we can generate text proofs with a structure
approaching as much as possible human-written proofs. In order to do this, our
model has to abstract away from the purely logical proof structure. Our solution
is to integrate some intentional information to enrich the rhetorical structure of the
final text.

1 Introduction and motivation

In this communication, we wish to address a specific application of a theorem
prover in computational linguistics, namely the natural language generation
of mathematical proofs. More precisely, the issue we are concerned with is:
how a structured computer-generated proof can be translated into a discourse
structure approaching as much as possible human-written proofs. This raises
the problem of the one-to-many correspondences between the global logical
structure of a text and the linguistics (viz. semantic and rhetorical) means
one can use to express this structure.

It is well known that one of the main weak points of natural language
generation (nLc) is the definition of input formats. Input formats are usually
tightly constrained by the domain and/or the application to which the gener-
ator is connected. And this often leads to adapting very customised strategies
for the deep generation process, which seriously slows down the research in
NLG, as soon as one attempts to see it as a genuine branch of computational
semantics.
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Plugging an nrc system to a theorem prover is scientifically interesting
because the output of the prover is expected to be encoded in a non ad hoc
language (i.e. logical formulae) which is moreover very close the language of
linguistic meaning representation in the frameworks of formal model-theoretic
semantics. Indeed, a mathematical proof has a stable and a well defined formal
structure: a natural deduction proof is, for example, a hierarchy of elimina-
tion and introduction rules application, that we call a proof tree. From a
semantic point of view, such a structure can be interpreted as a sequence of
inferences (which may be embedded). Therefore, we can intuitively assume
that the information given by the proof tree, gives us not only the semantic
content of the proof text, but also some information about its argumenta-
tive and rhetorical structure. This point has been made and used in number
of previous works in natural language proof generation (|[8[7]) which elabo-
rate proof tree exploration strategies. Those strategies attempt to build a
document plan by arranging and grouping portions of the proof tree. Now,
the texts produced this way are correct and close to formal proof, but they
are stereotyped, unnatural, fastidious and extremely hard to read. We think
that a possible explanation of those drawbacks is the difficulty to recognise
what should be done by content determination module vs. document struc-
turing module. Moreover, even though the proof tree structure constrains the
rhetorical structure, it does not fully define it. Empirically we notice that
a proof text reports not only the proof tree structure but also the reasoning
mechanism used in the proof.

In this paper, we present an original strategy of text proof planning, which
attempts to produce more natural and closer to hand-written text proofs.
The broad outline of our strategy is detailed through the presentation of the
GEPHOX system [5], which is a natural language proof generation system, the
formal proofs from which we generate the text being obtained with the proof
assistant PHOX [I2]. GEPHOX is intended to help mathematicians using
PHOX; and also to be used for computer assisted logic teaching [IT].

We focus on the generator What-to-say? module, whose organisation fol-
lows the standard architecture [I3] in two sub-modules (figure [II) :

ContDet in charge of computing the content to be expressed from the PHOX
output, this calculus takes into account the user] knowledge,

DocStruct in charge of discourse plan calculus.

The discourse plans presented here are SDRS, following the SDRT formalism
[2T]. This choice is doubly motivated: on the one hand our model is based on
the document structuring model in [6], which shows the effectiveness of SDRT
for deep generation; and on the other hand we adopt the conclusions reached
by [T4], namely that DRT (and implicitly SDRT) offers a particularly adapted
formalism for analysing and representing mathematical texts.

1 We designate by user the GEPHOX generated text recipient, and by redactor the PHOX
user
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Fig. 1. What-to-say? module architecture
2 Content determination : the ContDet module

The proof assistant PHOX allows one to construct mathematical proofs on
the computer, and guarantee the validity of the written proofs. Even if the
software has an automated deduction capability, the main use of PHOX — by
mathematicians and especially for teaching mathematics — is to check that
each step of the proof is correct. To build a proof, the redactor guides the
computer in the reasoning, and the software deals with the verifications and
the fastidious steps of the proof.

2.1  GEPHOX input

GEPHOX takes as input two kinds of informations: the proof script represent-
ing the commands entered by redactor, which is also a trace of the proof, and
the PhoX output formed by fragments of the proof tree, which can be taken
as the proof content.

The ContDet module has to compute from the input, taking into account
the user knowledge, the message that will be expressed by the generator. The
figure B] illustrates the treated input. One of the peculiarities of GEPHOX is
that the text produced has to follow as much as possible the structure encoded
in the proof script.

2.2  Knowledge bases

In GEPHOX, the input is represented with concepts and roles of a description
logic (DL, cf.[4]). Domain and user specific knowledge are respectively encoded
in two knowledge bases: DKB and UKB (where UKB is a sub-set of DKB). Those
knowledge bases consist of two different parts. On the one hand, the T-Box
(for terminological knowledge) encodes intensional knowledge, i.e. domain
(resp. user) concepts and roles. For example, the concept Entier describes
the set of natural numbers, in addition, the axioms are used to represent
reasonning strategies.



Proof script PhoX output

def Qm=m>0A3InecN (m?=2x%n?). Q=X m (m>0A3InEN (m?=2%n?): nat — prop
lem dec Vm € N(Qm — 3Im/ € N (Qm/ Am/ < m)). dec = Vm € N (Qm — Im’ € N(Qm/ Am/ <m)) :
theorem
lem sq2_irrat Ym € N -Qm. sq2_irrat = Vm € N -Qm
theorem
theorem square2 _irrat Vm,n € N (m? =2xn? > m=0An=0). | goal 1/1+VYm,n €N (m? =2xn? > m=0An=0)
intros. apply sq2_irrat with H. goal 1/1

H:=meN HO:=neN
Hl:=m? =2*n2 G:=-Qm
Fm=0An=20

elim H with [case]. goal 1/2 goal 2/2

H2:=m=20 H2:=yeN

FO=0An=0 H3:=m=Sy
FSy=0An=20

Fig. 2. Fragment of GEPHOX input for «/2 is ir rational »

On the other hand, the A-Box (for assertional knowledge) encodes exten-
sional knowledge, 7.e. the individuals of our universe. For instance, n € Entier
introduces an individual n belonging to the concept Entier.

2.8 Content calculus

The general principle of content calculus is the following. We must first build
the conceptual expressions (T-Box) representing the input. While doing this,
we have to keep in mind a set Z of individuals to which they are associated.
The content determination operates on this T-Box ],

Finally, the conceptual expressions are instanciated using the individuals
in Z to produce an A-Box (a set of facts) representing the message to be
generated.

The ContDet module starts with the translation task, meaning that the
input of the generator is translated into DL, using the concepts and roles of
DKB. If the definitions and theorems resulting from PHOX are not present
in the knowledge base, the translation procedure is able to dynamically cre-
ate new concepts using the concepts and roles which are known, and ax-
ioms corresponding to definitions and theorems. For example, the definition
def Qm=m>0A IneN (m?=2x%n?) will give us the concept Q defined
by: Q = Ensemble A Jsous-ensemble.{N*} A Jeq-def.{In € N (m? = 2*n2).

Once we have built the set £Cp of conceptual expressions representing our
input, the ContDet module will select in this set what we must say.

To do this we use filtering and grouping operations, to decide on the selec-
tion. The first operation consists in detecting the reasoning strategies and their

2 Two reasons motivate this choice: the first one is technical, in DI the reasoning is easier
on T-Box. The second, more theoretical, is due to the use of the conceptual expressions in
the lexicalization process, but this does not fall within the scope of the present paper.

3 {c} represents the concept containing only the individual c.
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parameters: for instance, recognizing that the command “elim H with [case]”
corresponds to the announcement of a case reasoning, the system computes
the different cases and associates them with this announcement.

The second operation is to highlight the similarities between different steps
in the proof. For this we use concept unification [3].

Finally, ContDet attempts to match the complex concept definitions in
the DKB with the expressions in £Cp. This allows one to synthesize sets of
more or less simple information to be associated with a predefined concept in
the knowledge base (this operation is generally named aggregation in natural
language generation).

The axioms (i.e. definitions in the DKB) used for this task are subsequently
kept in mind to calculate second order relations on the elements of £Cp.

The obtained T-Box gives a proof representation using all the concepts
of the domain. To produce cooperative and personalized texts, we need to
compare this representaion with the user knowledge (UKB), in order to make
sure that he/she can understand the content of £Cp. This comes down to
explaining (i.e. decomposing) the ECp concepts which are not present in the
UKB. This gives us a new £Cy conceptual expression set, which is calculated
by projection of ECp in the UKB.

The last step of content determination is to instanciate the expressions in
ECy with the individuals in Z and to verify the consistency of the obtained
A-Box fragment.

3 Document structuring

The figure Bl gives an example of the ContDet output [4]. This kind of structure
can be seen as an ordere set, of logical forms marking the significant steps
of the proof.

The axioms that allow us to build certain A-Boxs are given in the second
column. Moreover, the given structure is richer than a simple proof tree, since
the ContDet module ensures that they contain some elements of information
from the proof script.

A central point in our deep generation strategy consists in exploiting this
richness, considering that the proof script steps translated into logical forms
can be assimilated to communicative intentions. Those intentions allow us
to generate speech acts which “ humanise ” the proof text, by including in it
some rhetorical elements other than the usual logical relations.

The document plan calculus is taken into account by the DocStruct mod-
ule. We adopt here the document structuring model proposed by [6]. The
DocStruct module is in charge of two main tasks in order to produce a doc-

4 The notation p; = Prop(“m? = ...”) is a shortcut for Prop(p;) A constant(p;,“m? = ...”).

5 The order is imposed by the semantics of the dynamic conjunction A which is not sym-
metrical. In the figure Bl the enumeration of logical forms is given to improve readability.
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‘ | Logical forms (ABox) Azioms

A| sous-ensemble(Q,N*) A Q = EnsembleA
define(Q,"In € N (m? =2xn?)") Jsous-ensemble. {N*} A
Jeq-def.{In € N (m?=2xn?)

B| Entier(m) A neg-Q(m) neg-Q=-0Q

C| t; = not-in(sqrt—2,Q) A Theoreme(t;) A annonce(t;)

. Entier(m) A Entier(n) A choose(m) A choose(n)
. p1 = Prop(“m? = 2% n?") A suppose(p;)

. 11 = lemme(“lemmel”)

= W N =

. neg-Q(m) A implies(es,es)
. CaseReason(current) // the redactor start a case reasoning
. is-case(current,eg) A Nul(m)

. Nul(n) A implies(eg,e7)

o N O ot

. is-case(current,es) A Entier-non -nul(m)

Fig. 3. Fragment of the message for «/2 is irrational » (ContDet Output)

ument structure: 1) choosing the minimal structural units, 2) choosing the
rhetorical relations linking the units among them, to ensure discourse cohe-
sion and coherence.

3.1 Segmentation of the logical forms set

The A-Box] structure calculated by the ContDet module can be viewed as a
connected” graph (the nodes describe individuals and the edges the concep-
tual roles or relations). In this graph, certain subgraphs are strongly connected
(pseudo-cliques). Our strategy is to consider them as the source of minimal
discourse units, i.e. minimal content segments.

Furthermore, the subgraphs are connected with dependency relations that
we assimilate to high order relations, bearing on the discourse units. Such a
relation corresponds either to a script command or to the result of an axiom
application (e.g. deduction, conclusion...). This mechanism is illustrated in
the schema:

High order relations

N
N O

6 Our logical forms are in fact a fragment of the A-Box

7 We only consider here the case of a single connected graph; if we have a graph composed
of several non-connected subgraphs, the Docstruct module treats them separately. In our
message (figure B)) the lines A, B, C and D represent the unconnected subgraphs of our
input.




The segmentation result is given in the left column of the figure Bl in which
each line corresponds to a discourse segment.

As previously stated, our future document plan will be formalised in SDRT,
i.e. it will be a SDRS (Segmented Discourse Representation Structure) [2]. An
SDRS is a structure in which discourse constituents are connected by rhetorical
relations. The constituents are dynamic semantic representations inherited
from the DRT, namely DRSs. The segments in figure B will be translated into
DRss, and according to [6], this operation will take place at the same time
with the rhetorical relations selection.

3.2  Rhetorical relations calculus

The model proposed by [6] is declarative. The main idea is that rhetorical
relations are associated to meaning postulates which in turn are considered
as conditions (triggers) of selecting a valid relation. The conditions are for-
mulated in the same language as input logical forms in order to allow direct
associations.

The figure Bl(a) illustrates such an association with a Resultat rule, which
in SDRT expresses a causality relation between two sentences. The rule has
the following form: conditions — SDRS. The SDRS on the right-hand side
is a discourse component in which the rhetorical relation triggered is instan-
tiated. The function Calculate_SDRS will be developed in § B3 it is part
of the structuring procedure and allows recursive construction of discourse.
The SDRS obtained in figure Bl(a) can produce the textl?] : Sentence;. Donc
Sentence,. ’ Let us mention that, following [6], a condition such as im-
plies(e1, e5) is not necessarily associated with a rhetorical relation; it may for
instance be associated with a predicate (* verbal ”) which gives rise to an
DRS X1 implique Xs. ”, “de X; on obtient X,. ’ or “ X,y se déduit de
Xl n) 12

Discourse relations rules Case reasonning schema

Resultat:

implies(e1,e2) — | m 2 ‘
m : Calculate_SDRS(eq) : 00”58‘1“5"55(7) : Conelude
mo : Calculate SDRS(e3) C"W‘W"“(vg)
Resultat(my, m2) Consequence (.,.)

(a) (b)

Fig. 4. Rhetorical structuring rules and schema

8 Our system produce french texts, so
9 « Sentence;. therefore Sentencey. ”
10« X implies Xo.”

e from Xy we obtain Xo.”

12¢ Xy is deduced from X ”



However our strategy differs from [6] in many points. On the one hand, the
logical forms of our document structuring input contain informations which
can reflect communicative intentions. This allows us to select from a wide
range of rhetorical relations, mainly by varying the illocutionary forces. We
follow in this the [2] hypothesis assuming that the arguments of rhetorical
relations should be speech acts tokens, and that the relations induce an illo-
cutionary typing. In our application, we have to translate “proving acts” (the
PHOX commands typed by the redactor) into speech acts. The rules are sim-
ilar to those in figure B(a) except that when a triggering condition has been
computed from an operation from the proof script, it can yield an imperative
clause. For instance, a condition such as choose(n'hcan produce an indicative
(“on choisit n..”13]) or an imperative (“soit n..”114]). Indeed, following [9],
we assume that imperatives denote actions whose semantic contributions is
to change the context like a (deontic) modal operator; now in text proofs, it
happens that the actions denoted by imperatives usually correspond to some
steps of the demonstration process.

Another particularity of our approach comes from the treatment of reason-
ing strategy announcements mentioned in the logical form and calculated from
the proof script. Such an announcement does not directly trigger a rhetorical
relation, but a rhetorical schema associated with the reasoning strategy. A
schema is in fact a complex structure containing a certain number of relations.
For example, the case reasoning schema is given in figure @(b). Using the proof
script information allows us to skip some proof portions along the line of the
chosen schema to produce a coarse grained text.

This treatment can be motivated by a common property of reasoning
strategies, that is their dependency on fundamental theorems (e.g. the elimi-
nation of V for case reasoning) that are never explicited in the text proofs, but
which induce precise discourse configurations (e.g. a sequence of “ si...,alors... {19]
for case reasoning). Such a triggered schema contains just a rhetorical skeleton
which will be later on shaped to fill the logical form content.

3.3  Algorithm

The algorithm takes as input a list of logical forms in order to produce the
document plan: an SDRS. It works in an incremental way and achieves two
different treatments: one is activates rhetorical schema, i.e. complex SDRS
trigged by reasoning strategies or intentional conditions, we choose a rhetorical
schema, SCH, construct recursively the SDRSs corresponding to the elements
of SCH and then saturate it; the second implements a declarative treatment
a la 0] for simple rules like Resultat (figure Bh).

13«yWe choose n ...”
14 “Let n 2
15 if  then...”



Calculate_SDRS(listeFL)
for C; in listeF'L
if C; contains a strategy or intentional conditions .S;
then
choose a schema SCH;

for each L; ; in SCH;
// where Li,j is an element of SCH;
SDRSZ'J‘ = Calculate_SDRS(FLi7j)
// where FL; ; is the formula associated to L;
SDRS; = result of filling SCH; with {SDRS; ;};
else
SDRS; = Calculate_DRS(C;) // following the algorithm of [6]
return SDRS;

Applying the document structuring algorithm to the message in figure B,
produce, as a possible solution, the document plan represented in figure Bl

m,n

m1: | choose(m) Narration(my, )

choose(n)

ma, n2,p1

suj 0Se
gz | UPP (p1) ‘ Narration(ra, 7))
name(py *m2= 2 % n2”)

ma =m nz=mn

lemme(I1)

T3 47 | neg-Q(my) Result(73,m4)
name(l1, “lemme 2”)
my=m
appel(l1)
/. 6T
i
TRTWETYTY
/.
7r2.
dy
‘ ms ng ‘ mg mio
, - , definition(d;)
78 | nul(mg) |7s: | nul(ng) 9t | entier-non-nul(mg) |7o: | mi0: m11: | Q(mio)
w5 | me: name(d; , “definition 1”)
mg =1m ng =n mg =m mip = m
appel(d1)
Result(m10,m11)
Consequence(mg, %)
Consequence(momy)

Fig. 5. A fragment of possible document plan for «v/2 is irrational »



4 Conclusion

The deep generation model in GEPHOX proposes a planning strategy which
is original for at least two reasons. First, in comparison to the existing proof
text automatic generators, the discourse (plans) produced by GEPHOX look
more natural and closer to hand-written proofs. This is due to the specificity
of the content determination module ContDet which takes advantage of the
proof assistant output, essentially by extracting informations of intentional
nature (e.g. the proof script commands).

Secondly, even if use of intentions in natural language generation is not
new (e.g. cf. [I0]), the solution presented here, which consist in taking into
account the redactor intentions, has the advantage of being simple and el-
egant. Actually, our approach is hybrid in that both intentional conditions
and informational (semantical) conditions of the input produce the same dis-
course structures: fragments of SDRS. These fragments are then assembled on
the basis of a unique procedure (which is only constrained by well-formedness
rules in SDRT). This way, we can moreover avoid the well-known complexity
of a separate treatment of communicative goals and rhetorical structures.

The text in figure @l illustrates the kind of output produced.

Definition 1. Nous définissons ) comme un sous-ensemble de N* tel que Vm € Q on a
IneN m?=2xn?

Lemma 2. Pour tout m € N on a =(Qm)

Lemma 3. siVm,n €N (m?>=2%n> = m =0An=0) alors v2 ¢ Q

Theorem. /2 ¢Q

Proof. Soit n,m € N. Supposons que m?= 2 * n?. Par le lemme 2 nous avons —(Qm). Si
m = 0 nous obtenons facilement n = 0; si m > 0 alors nous avons (@m) par définition de
Q et donc une contradiction. Donc Vm,n € N (m?=2%n? — m =0An = 0), d’aprés le
lemme 8 nous avons donc /2 ¢Q

Fig. 6. A possible text for «\/2 is irrational »
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